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Active control of near-wall turbulence by local
oscillating blowing
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(Received 12 March 1999 and in revised form 2 October 2000)

The effect of time-periodical blowing through a spanwise slot on the near-wall
turbulence characteristics is investigated. The blowing velocity changes in a cyclic
manner from 0 to 5 wall units. The frequency of the oscillations is nearly equal
to the median frequency of the near-wall turbulence. The measurements of the
wall shear stress and the streamwise velocity are reported and discussed. The flow
field near the blowing slot is partly relaminarized during the acceleration phase
of the injection velocity which extends 40 wall units downstream. The imposed
unsteadiness is confined to the buffer layer, and the time-mean structural parameters
under unsteady blowing are found to be close to those of isotropic turbulence in this
region. The relaminarized phase is unstable and gives way to a coherent spanwise
structure that increases the shear from 80 to 300 wall units downstream of the slot in
a predictable way. This phenomenon is strongly imposed-frequency dependent.

1. Introduction
It has recently been shown through direct numerical simulations that it is possible

to control near-wall turbulence by either using suboptimal schemes (Bewley et al.
1993; Hill 1993, 1994) or adaptive nonlinear methods (neural networks, Lee et al.
1997). These studies lead to some insight into the near-wall physics, but somewhat
indirectly. There are, however, some ‘feasibility’ problems from a technological point
of view. The physical application of these methods requires an unacceptably dense
distribution of the sensors and actuators at the wall. The streamwise and spanwise
spacing of these micro electro-mechanical systems (MEMS) have to be as small as
the viscous sublayer thickness to obtain an appreciable drag reduction of about 20%.
Therefore, and despite the progress achieved now in micro-technology, the feasibility
of these control strategies is still under question.

One way to remedy this situation could be the use of a robust-control-like strategy
by first slightly forcing the near-wall turbulence, then determining its frequency
response and, finally, introducing local suboptimal control with eventually a coarser
and feasible distribution of MEMS depending upon the reaction of the near-wall
flow. This study deals with the first of these, namely the reaction of the near-wall
turbulence to a time-periodical forcing through a localized oscillating blowing. The
achievement of this strategy poses the problem of optimal control of periodically
perturbed (cyclostationary) flows, which is an interesting theoretical challenge.

The active and passive management of the turbulent wall shear stress is ultimately
related to the interaction of the coherent structures present in the inner layer with the
near-wall flow. The ad hoc out-of-phase active control scheme reported by Choi, Moin
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& Kim (1994) may, for instance, be replaced easily in this context. The wall shear stress
is instantaneously enhanced in the regions where the spanwise vorticity is stretched
through the stagnation flow induced by the quasi-streamwise (QSV) Reynolds shear
stress producing vortices (see for example Tardu 1995 and the references therein). Drag
reduction can be achieved by decreasing the intensity of the QSVs or by pushing
them away to weaken their interaction with the near-wall flow. A time-periodical
localized blowing through a slot provides in this sense a supplementary parameter
that is the imposed frequency of the oscillations. Here, we discuss how the suboptimal
schemes may be modified to incorporate the effect of a continuous time-dependent
intervention at the wall.

Studying local excitation of the near-wall turbulence may help us to solve prob-
lems related to controllability and predictability. Rendering a process predictable (or
deterministic-like) increases its degree of controllability. It is known that any un-
predictable process s[n] can be decomposed into s[n] = sα[n] + sβ[n], where sα[n] is
a regular process and sβ[n] is a predictable process orthogonal to sα[n]. This result
is known as Wold’s decomposition (Papoulis 1984 p. 441). In the case of near-wall
turbulence sβ[n] may be interpreted as the part due to the coherent structures, while
sα[n] is the incoherent part. The aim of a pseudorobust control is to intervene locally
in space somewhere at the wall to filter sα[n], to accentuate sβ[n], and to control the
flow more efficiently at further downstream locations.

This strategy is in keeping with the general pattern of dual control, a technique
used in some stochastic optimal control solutions (Bar-Shalom 1981; Stengel 1994 p.
436). The aim of dual control is to provide control inputs that enhance parameter
estimation in real-time and adapt the control strategy accordingly. The ad hoc system
inputs, such as impulses, doublets, time-periodical waveforms inject energy in the
system to improve its predictability and identifiability. These inputs, exactly as the
time-periodical, space-localized blowing investigated here, may allow better future
state estimates and control actions. The dual control may provide 80% more accurate
results in some applications, compared with control without probing commands (Tse
& Shalom 1973).

The details of dual control are given in Bar-Shalom (1981) and Maitelli &
Yoneyama (1999) and references therein. We only aim to clarify the possible role
of local excitation of the near-wall turbulence as a probing strategy. We introduce in
figure 1, adapted from Stengel (1994), the block diagram of dual control using the
local unsteady blowing as probing input. A predicted state x̂ corresponds to each
step of the process. The nominal control u0 is the optimal deterministic trajectory (i.e.
without taking into account the uncertainties) related to the predicted state. Because
of the uncontrollable uncertainties (turbulence), the control should be cautious. The
cautious cost depends upon the covariance of the state equations, as well as the sub-
sequent process noise. The probing is obtained by experimentation and its aim is to
reduce the future uncertainties, i.e. the updated covariance and the value of the future
information. The dual control provides more accurate parameter estimates because of
less cautious control activity. Thus, we can claim that the local unsteady blowing is an
efficient probing if it decreases the covariance in some extended zone downstream of
the intervention. It will be shown in this study that this is indeed the case in a signifi-
cant region, but that there is a subsequent penalty. Possible solutions will be discussed.

We will now give a concrete example. Recently, some controllers have been devel-
oped using the linearized Navier–Stokes equation. This is because the linear coupling
term plays an important role in the vorticity generation mechanism. Some 10% drag
reduction has been obtained through the control of part of the modes (Lim et al.
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Figure 1. Principle of dual control with unsteady localized blowing used as probing control. The
system anticipates a future decision by using a Kalman filter as predictor. The nominal control u0

is the optimum deterministic strategy on the estimated state x̂ without turbulence. The cautious
control is imposed by turbulence. The probing aims to reduce uncertainty.

2000). The dual control in this sense is envisaged as follows. The stochastic controller
can, for instance, be a linear-optimal controller as used by Lim et al. (2000). This can
be extended with a Kalman–Bucy filter that estimates parameters and state. The prob-
ing is provided by localized unsteady blowing–suction to enhance the state estimation
and improve the cautious control actions. The latter may still be achieved by ‘pinpoint’
blowing–suction as used in suboptimal schemes. Since probing enhances the parameter
estimation, it is expected that the cautious control requires fewer sensors and actuators.

New perspectives are possible in near-wall turbulence control. The objectives of
this preliminary study are, however, limited to clarifying the following points:

(i) the efficiency of localized unsteady blowing as an open-loop control scheme;
(ii) the frequency response of near-wall turbulence subject to a localized blowing

from slots and the related flow phenomena;
(iii) the efficiency and limitation of unsteady blowing as a probing method to

enhance the predictability.
Large-scale unsteady blowing is already used in separation control. However, the

response and the relaxation of the near-wall turbulence to a localized intervention at
the wall are not well understood even when the latter is steady (Sano & Hirayama
1985; Pailhas et al. 1991; Sokolov & Antonia 1993; Choi, Park & Hahn 1997). Space-
periodic local suction and blowing to control the near-wall turbulence is not an
original idea. One example is the selective suction in the spanwise direction proposed
by Gad-el-Hak & Blackwelder (1989). The addition of time periodicity that renders
the relaxation phenomena depending on both time and space is, however, new, at
least in the context of the near-wall control.

2. Definitions, experimental set-up and data reduction
2.1. Experimental set-up

An experimental model has been developed in the wind tunnel of our laboratory
(figure 2a). The blowing at the wall is done through a spanwise slot of Lx = 0.6 mm
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Figure 2. Experimental set-up. (a) Wind tunnel and test section. The dimensions of the blowing slot
are shown in mm. (b) Example of phase average of the injection velocity. The imposed frequency
in wall units is f+ = 0.017.

streamwise width and Lz = 100 mm spanwise length. These dimensions correspond,
respectively, to Lx = 7lν = 7(ν/ūτ) and Lz = 1212lν when the external velocity is
Ū∞ = 4 m s−1 (nominal working conditions), where ν is the kinematic viscosity and
ūτ =

√
(τ/ρ) is the shear velocity. The test station is situated 13938lν downstream of

the tripping strip.
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A special pulsating device has been designed for the present purpose. It consists
of a profiled cylinder mounted on a shaft driven by a variable speed motor. The
cylinder covers some, all, or none of the length of the slots to produce a periodical
normal velocity of suction and blowing. Compressibility waves have been avoided by
making use of ‘acoustical filters’ at the outlet of the pulsating device. The volume
of these settling chambers may be changed according to the desired value of the
cut-off frequency. Quite satisfactory sinusoidal waveforms of the suction/blowing
wall normal velocities 〈v0〉 have been obtained in this way for the amplitude of the

imposed wall normal velocities up to Â = Av̄0
= 2 m s−1 (Â+ = 8) and the imposed

frequency f < 50 Hz (f+ < 23×10−3) (figure 2b). Hereinafter ‘+’ denotes values scaled
with the inner variables, i.e. the shear velocity and the viscosity.

The wall shear stress measurements have been performed by means of a Cousteix–
Houdeville wall hot-wire gauge (HWG) to avoid problems caused by conduction into
the substrate (see for example Tardu, Pham & Binder 1991). A wire of 4µm diameter
is set into a microcavity and flush mounted to the wall (figure 25 of the Appendix).
The length of the sensing element is 200 µm which corresponds to a spanwise extent
of ∆+

z ≈ 3 at the test station with Ū∞ = 4 m s−1. It is well known that ∆+
z < 20 to

avoid problems caused by the spanwise averaging of the energetic structures. It is
seen that the dimensions of the HWG sensing part are largely within this limit. It
is shown in the Appendix that consistent results up to the statistics of order 4 are
obtained with this probe. The streamwise velocity is determined by a TSI 1276-10W
micro hot film. The sensing element of the later is 5 wall units.

The sampling frequency was set equal to f+
s = 2. A Krohn Hite filter at adequate

cut-off frequencies prefiltered the signals. The total duration of each record is Ttot ≈
5000T∞ in the case of steady blowing and in the standard boundary layer where
T∞ = δ/Ū∞ is the outer timescale. This is long enough to ensure the convergence
of the statistics up to fourth-order moments including those of the time derivative
of the fluctuating signals (Klewicki & Falco 1990). The total duration of the data
was increased up to Ttot ≈ 25 000T∞ in the case of unsteady blowing to guarantee
the statistical convergence of the phase averages. Bucking amplifiers were used to
suppress the d.c. anemometer output at zero velocity, so that the signal could be
amplified before A/D conversion. This conversion was performed with an Analog-
Device RTI-800 board (accuracy: 11 bit+sign; 8 channels) installed in a PC. The
calibration of the HWGs was performed in situ.

Care is necessary in the interpretation of data in the presence of organized motion.
To extract the deterministic and deduce the random part of the flow quantities, the
classical triple decomposition is used. A flow quantity q(x, t;T ) is decomposed into a
time mean q̄, an oscillating q̃ and a fluctuating q′ part:

q(x, t;T ) = q̄(x) + q̃(x, t/T ) + q′(x, t),

where T is the period of the oscillating blowing. The ensemble or the phase average
is performed to determine the amplitude Aq̃ and phase Φq̃ of the oscillating part q̃:

〈q(x, t/T )〉 = q̄(x) + q̃(x, t/T ) = lim
N→∞

N∑
i=1

q(t+ iT ),

from which the instantaneous fluctuating part q′ is adequately determined. A pulse
from a photoelectric cell triggered by the pulsator provided the beginning of each
cycle, and the trigger signal was also recorded. The modulation characteristics have
been determined through a least-squares Fourier analysis.
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2.2. Experimental conditions; blowing severity

The results presented here are obtained with an imposed frequency f+ = fν/u2
τ SBL =

0.017, and an amplitude Â+ = 5. The Reynolds number based on the boundary-layer
thickness of the SBL is Reδ = 104, at the test section and the free-stream velocity is
Ū∞ = 4 m s−1.

In flows with uniformly distributed continuous blowing/suction (transpired layers
through a porous surface), the parameter that characterizes the intervention at the
wall is given by Bf = v̄0Ū∞/ū2

τ = v̄+
0 Ū

+∞ where v̄0 is the injection/suction velocity at
the wall (Andersen, Kays & Moffat 1975). This is expected, since Bf appears directly
in the momentum integral equation of the transpired boundary layer and plays a role
similar to the Clauser pressure-gradient parameter. However, the characterization of
the severity of local blowing/suction by strips is not straightforward and Bf is not
suitable for describing the flow characteristics past the local intervention, as clearly
shown by Sano & Hirayama (1985) and Sokolov & Antonia (1993). Indeed, the local
suction/blowing involves phenomena related to the relaxation of near wall turbulence
downstream of the intervention zone. When v̄+

0 is low, but the injection is carried out
over large areas as in transpired boundary layers, the flow has enough time to relax
and reach its equilibrium state rapidly. On the other hand, in the case of large injection
velocities v̄+

0 over short distances by strips, the near wall turbulence can hardly main-
tain its equilibrium state and its structure is expected to be strongly affected (Sokolov
& Antonia 1993). Therefore, Bf ∝ v̄+

0 ∝ v̄0/Ū∞ cannot be a similarity parameter in
such cases. The ratio of the injection or suction flow to the incoming flow rate, i.e.

Θ = v0Lx

/∫ ∞
0

Ū dy

is therefore introduced by the authors cited, and proved to be adequate for measuring
the blowing/suction severity.

We proceeded with particularly small slot widths compared with previous studies
quoted above. For instance, the experiments reported by Sano & Hirayama (1985)
have been conducted with two different configurations wherein Lx was, respectively,
50 and 25 mm corresponding to L+

x ≈ 2000 and L+
x ≈ 1000 under their experimental

conditions. Recall that the slit width is only L+
x = 7 here. Consequently, the severity

parameter is low. The injection velocity in steady blowing experiments investigated
here is v̄0 = 1 m s−1 and the severity parameter is only Θ = 0.006. We measured the
shape parameter just downstream of the slit at x/δ = 0.1 under these circumstances
and found H = 1.4. We concluded, therefore, that the flow is not separated, at least
at this particular position. In unsteady blowing experiments, the injection velocity
〈v0〉 changes in a cyclic manner between 0 and 2 m s−1. The maximum value of
the severity parameter in the oscillation cycle is therefore Θ = 0.012. The shape
parameter measured at the same station increased to H = 1.6 at v̄0 = 2 m s−1, but still
remained below the critical value corresponding to flows prone to separate. Note, by
the way, that in DNS studies dealing with active control conducted so far, the severity
parameter is zero, because of the pinpoint intervention. In practical situations this is
impossible, and even a low Θ may affect profoundly the flow in the neighbourhood of
the injection/suction region. This may be an additional reason to consider the DNS
results with some caution.

2.3. Notation

Before discussing the results, the notation must be clarified. We have three flow
configurations here, namely, the standard boundary layer (SBL), and the manipulated
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Unsteady blowing Steady blowing

x+ τ̄∗P /τ̄SBL

√
τ′τ′∗P /τ̄SBL τ̄∗S/τ̄SBL

√
τ′τ′∗S/τ̄SBL

20 0.55 0.15 0.64 0.14
40 0.67 0.17 0.67 0.16

Table 1. The time mean wall shear stress and wall shear stress intensity under time periodical
(subscript P ) and steady blowing (S ) compared with the standard boundary layer (SBL).

boundary layer (MBL) under steady and unsteady local blowing. Quantities measured
in the manipulated boundary layer will be denoted by an asterisk (∗) which will be
omitted if unnecessary. The subscripts S and P indicate, respectively, steady and
time-periodical blowing, and + indicates quantities scaled with the wall variables, i.e.
the viscosity and the shear velocity.

3. Results
One of the main aims of this study is to determine whether a periodic time-

varying blowing of the form ṽ+
0 = Â+(1− cos 2πf+t+) affects the near-wall turbulence

characteristics when compared with a steady injection by slot with the same time-mean

blowing velocity v̄+
0 = ṽ+

0 = Â+ resulting in the same time mean severity parameter

Θ = 〈Θ〉. In other words, the question is whether the near-wall flow interacts at the
mean with the imposed unsteadiness or not. Therefore, we will systematically compare
the mean flow characteristics obtained with unsteady and steady blowing hereinafter.

3.1. Time-mean flow

Table 1 summarizes the results concerning the time-mean wall shear stress τ̄ and its

turbulent intensity
√
τ′τ′ under steady and unsteady blowing. The closest point to

the blowing slot at which the wall shear stress could be measured is x+ = 20. Thus,
the results are given at two test sections, respectively, x+ = 20 and x+ = 40. It is
seen that the time-mean characteristics are not altered by the imposed unsteadiness
under the present experimental conditions. Both the time-mean wall shear stress and
wall shear stress intensities are identical under steady and unsteady blowing, except
at the nearest position to the slot where the unsteady blowing gives a slightly larger
decrease in the drag. Note that the drag reduction is about 40% at the mean. The wall
shear stress intensity is related to the wall shear stress of the standard boundary layer

(SBL) in table 1. Since
√
τ′τ′SBL/τ̄SBL = 0.36 in the SBL as shown in the Appendix, it

may be concluded from table 1 that the decrease in the wall shear stress intensity is
roughly 60% in the manipulated boundary layer at x+ < 40.

Figure 3(a) shows the time-mean streamwise velocity profiles in the standard
boundary layer and in the presence of steady or unsteady blowing at x+ = 40
downstream of the slit. The velocity ū and the wall normal coordinate y are scaled
with the local inner variables, i.e. by ūτ SBL in the SBL and ū∗τS or ū∗τP in the manipulated
boundary layer. The first striking feature of the results summarized in figure 3(a) is the
insensitivity of the time-mean streamwise velocity profiles to the imposed unsteadiness.

It is indeed seen that both ū∗+S and ū∗+U = 〈u〉+ corresponding, respectively, to steady
and unsteady blowing, collapse fairly well in the entire boundary layer.
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(a) ū+ = 2.5 ln y++10.5

ū
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Figure 3. Time-mean velocity characteristics at 40 wall units downstream of the blowing slot. The

imposed frequency is f+ = 0.017 and the imposed amplitude is Â+ = 5. (a) Time-mean velocity
scaled with local shear velocity. (b) Longitudinal turbulent intensity versus the wall normal distance,
both scaled with the local shear velocity. (c) Longitudinal turbulent intensity versus the wall normal
distance, both scaled with the shear velocity of the standard boundary layer.

In figure 3(a), we can distinguish easily between the viscous sublayer, the buffer
layer, and the log-layer in the manipulated boundary layer, in the same way as in
the canonical boundary layer. These results lead us first to conclude that one of the
major effects of the blowing is a considerable thickening of the viscous sublayer.
Thus, ū∗+S ≈ ū∗+P = y+∗ at y+∗ < 12 under both steady and unsteady blowing while
the thickness of the viscous sublayer in the SBL is 5 wall units. It is further noted
from figure 3(a) that the velocity profiles collapse well with ū∗+ = 2.5 ln y+∗ + 10.5
for y+∗ > 35 in the MBL, pointing to the existence of a constant shear layer with
time-mean equilibrium, leading to a logarithmic profile. The von Kármán constant is
the same as the SBL. The buffer layer, on the other hand, is somewhat thinned and
extends from only y+∗ = 12 to y+∗ = 35 under the effect of blowing. In the SBL, this
layer occupies a larger zone restricted to 5 < y+ < 30.

The upward shift observed in the log region of the manipulated boundary layer
agrees with the direct numerical simulations conducted by Choi et al. (1997) who
investigated the effects of steady blowing and suction from a spanwise slot. This is a
common feature of drag-reducing effects, and is a direct consequence of the thickening
of the viscous sublayer and vice versa. This may be shown in different ways, for
example by the Rotta model (1950). Rotta used the Prandtl mixing-length hypothesis

and modelled the shear stress as ∂ū+/∂y+ − u′v′+ = [1 + l+2
m ∂ū+/∂y+]∂ū+/∂y+ = 1,

where, contrary to the classical theory, the mixing length is, l+m = χ(y+ − δ+
v ), where

δ+
v is the thickness of the viscous sublayer in wall units, and χ is von Kármán’s

universal constant. The virtual origin of the mixing length is therefore shifted by δ+
v

and the flow within y+ < δ+
v is supposed to be completely viscous. The streamwise



Active control of near-wall turbulence 225

velocity distribution resulting from this closure is ū+ = A ln y+ + B at large values of
y+ with A = 1/χ and B = (ln 4χ − 1)/χ + δ+

v . It is seen that B is directly related to
the viscous sublayer thickness as expected. Taking χ = 0.4 and δ̄+

vS ≈ δ̄+
vP = 12 in the

manipulated boundary layer, leads to B = 10.6, which is in close agreement with the
results summarized in figure 3(a).

The distributions of the time-mean turbulence intensity
√
u′u′ scaled with local

variables are shown in figure 3(b). The profiles corresponding to the manipulated
and standard boundary layers collapse in the aggregate, but there are some subtle
differences in the reaction of the buffer sublayer turbulence to the unsteady blowing.
It is first seen in figure 3(b) that the intensity under steady blowing is qualitatively
similar to that of the unmanipulated boundary layer with a sharp maximum at

y+∗ = 16. In the SBL,
√
u′u′ and the production reach their maximum at y+ = 12,

which is slightly smaller. The steady blowing increases the streamwise turbulence level
in the low buffer layer apparently by about 10%. However, since the scaling is related
to ū∗τS , which decreases, the non-scaled maximum intensity is not or is only slightly
affected, as can be seen in figure 3(c). The reaction of the buffer-layer turbulence to
unsteady blowing presents one major characteristic, namely the intensity has a plateau
in a large zone between 10 < y+∗ < 50. This indicates an unexplained increase of
mixing near the wall caused exclusively by the imposed unsteadiness. The maximum,
on the other hand, takes place at y+∗ = 10, somewhat earlier than in the SBL.

Both the turbulence intensity and the wall normal distance y are scaled with the
shear velocity of the SBL in figure 3(c) to show the raw effects of the manipulation.
The behaviour near the wall is accentuated with the logarithmic scale. The data
are consistent with those on the turbulent wall shear stress intensity. Indeed, the

asymptotic behaviour of the turbulence intensity as the wall is approached is
√
u′u′ ≈

−
√
ω′z0ω′z0y with ω′z,0 being the fluctuating spanwise vorticity at y = 0. This leads in

wall units to
√
u′u′/ūτ ≈ y+

√
τ′τ′/τ̄ as y+ → 0, with equality at y+ < 2.5 (Popovich

& Hummel 1967). Figure 3(c) shows that, in the SBL,
√
u′u′/ūτ ≈ 0.36y+ very near

the wall, as it should be. The first points next to y = 0, corresponding to the MBL,
also collapse quite well with the linear curves whose slopes are equal to the values

of
√
τ′τ′∗/τ̄SBL taken from table 1. Only the curve (broken bold line) related to the

unsteady blowing case is shown for the sake of clarity in figure 3(c).
The main effect of blowing is undoubtedly the shift of the flow structures away

from the wall and, thereby, of the near-wall spanwise vorticity. The interesting feature
of the streamwise turbulence intensity distribution under unsteady or steady blowing
is its linearity in a large part of the near-wall layer demarcated by 4 < y+ < 10
(figure 3c). This gives the impression that there is a virtual origin situated at y+ = 2,
which may be related to the removal of the near-wall spanwise vorticity.

The effect of local oscillating blowing on the fine structure of turbulence is analysed
through the distributions of the skewness and flatness factors of u′ and of its time
derivative, and the results are shown in figure 4. The time derivatives du′/dt are
computed by using a 64-point digital finite impulse filter of zero phase shift. It has to
be emphasized first that the measurements in the SBL are in excellent agreement with
the literature (Ueda & Hinze 1975; Kim, Moin & Moser 1987). They are not shown
in figure 4 for the sake of clarity. The global impression from the profiles obtained
under steady blowing is that any effect on the fine structure is hardly detectable,
except maybe close to the wall in the viscous region for the flatness of u′ (figure 4b).
Furthermore, there is clearly no dynamic structural effect of steady blowing on the
small-scale turbulence, since the skewness of du′/dt collapses remarkably well with
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Symbols as in figure 3.

the SBL profile in figure 4(c). This is far from being the case for the oscillating
blowing. The effect of the imposed unsteadiness in the whole buffer layer is indeed
striking. The skewness and the flatness of u′ at 10 < y+ < 30 are, respectively, Su′ ≈ 0
and Fu′ ≈ 3 when the blowing is unsteady, compared with Su′ ≈ −0.3 and Fu′ ≈ 2 of
the SBL. Furthermore, the skewness of the time derivative du′/dt is found to be close
to 0.3 in this zone, a value that is significantly different from 1 of the unmanipulated
buffer layer (figure 4c). These results are remarkable because these characteristics are
in fact those of isotropic turbulence. I am not aware of such a strong interaction
caused by an excitation of any kind with the fine structure of the near-wall turbulence.
The oscillating blowing acts presumably as an ‘isotropening’ (whitening) filteration at
the time-mean sense near the wall under the present working conditions. The term
‘at the mean’ has to be emphasized since the flow quantities are strongly modulated
in the buffer layer, as will be shown in the next section.

3.2. Phase averages

Figure 5(a) shows the cyclic modulation of the wall shear stress at x+ = 20 and
40, downstream of the slit. The phase average 〈τ〉 is scaled with the time-mean wall
shear stress τ̄SBL of the unmanipulated standard boundary layer. The waveform of the
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/ū
* P

y+*

9
11
13

Figure 6. Modulation of the streamwise velocity at x+ = 40, in (a) the viscous
and (b) buffer sublayers.

injection velocity (not to scale) is also shown. The striking feature of the reaction of
〈τ〉 takes place during the acceleration phase of the injection velocity. The wall shear
stress decreases rapidly during this phase until it reaches the laminar limit defined as
the value that a Blasius boundary layer would have at the same Reynolds number.
The corresponding phase averages of the wall shear stress intensity 〈τ′τ′〉/τ′τ′SBL are
shown in figure 5(b). The near-wall turbulence activity is totally suppressed at x+ = 20
during half of the oscillation cycle, coinciding again with the acceleration phase of
〈v0〉. The decrease of the shear and of the suppression of the turbulence activity, point
to a time–space localized relaminarization. At x+ = 40, there is a slight increase both
in 〈τ〉 and 〈τ′τ′〉 at t/T = 0.6, shown by an arrow in figure 5. Close inspection of the
data has shown that this corresponds to a transitional spot-like structure resulting
from the set-up of an instability. This will be discussed in detail in § 3.3.

The phase averages of the streamwise velocity 〈u〉 (t/T ; y+) determined at x+ = 40
are shown in figure 6. They are normalized by the local time mean velocity ū∗P (y+)
under unsteady blowing. They express, therefore, the relative modulation of 〈u〉. It is
clearly seen in figure 6(a) that the phase average of the velocity decreases significantly
during the acceleration phase, in agreement with the behaviour of the wall shear
stress just discussed. The 〈u〉 modulation is large at y+∗ < 7, and it is highly nonlinear
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with important secondary harmonics. It decreases rapidly in the low-buffer layer
(figure 6b). At y+∗ = 13, the relative amplitude of 〈u〉 is smaller than 10%. The
penetration depth induced by oscillating blowing is about δy+∗ ≈ 12 at this particular
x+ station. The thickness of the zone wherein the oscillating shear is confined is of
the same order of magnitude.

Figure 7 shows the phase averages of the streamwise turbulence intensity 〈u′u′〉
normalized by u′u′∗P to be consistent with the presentation adopted for 〈u〉. It is clearly
seen in figure 7(a) that the viscous sublayer is almost free of turbulence activity during
the acceleration phase. The other striking feature of the results presented in figure 7(a)
is the occurrence of unexpectedly large modulations of the turbulence intensities that
lead to peak-to-peak relative amplitudes as high as 80%. It is quite surprising to have
such severe effects on turbulence when we recall that the unsteady 〈v0〉 forcing is only
local. The 〈u′u′〉 modulation penetrates further in the low-log layer compared with

〈u〉 (figure 7b). The unsteadiness is not felt at y+∗ > 30 where ũ′u′ ≈ 0.

The strong modification of the wall turbulence structure is captured better in figure 8
which shows the phase averages of the skewness 〈Sdu′/dt〉 of the time derivative of
fluctuating streamwise velocity du′/dt, and of the ejection frequency 〈f+∗

e 〉 = 〈fe〉ν/ū∗2τP .
The latter is identified by VITA through the phase-averaged thresholds at y+ = 12 in
a way similar to Tardu & Binder (1997). The detector function for VITA is:

D(t) = 1 if σv > k〈u′u′〉 and du′/dt > 0,

D(t) = 0 otherwise,

where

( )v = 1/〈Tv〉
∫ t+Tv/2

t−Tv/2
( ) dt′,

and σv = (u′2)v − (u′v)2.
The threshold is set at k = 0.35 as in steady flow, according to Luchik & Tiederman

(1987), while the integration time is equal to 13 wall units. The time of occurrence of
a VITA ejection is taken as the middle of the D(t) pulse. Only the accelerating events
are taken into account. The thresholds were set respective to the phase average of
〈u′u′〉, and not to the time-mean turbulence intensity which would bias the results, as
was shown by Tardu & Binder (1997).
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Coming to the results presented in figure 8, recall first that 〈Sdu′/dt〉 is related to the
production of mean-square streamwise vorticity by stretching and the nonlinearity in
the inner layer (§ 4). Figure 8(a) shows that both the vorticity generation and produc-
tion mechanisms are altered during half of the oscillation cycle. In the acceleration
phase, the bursting activity, together with the vortex stretching, is largely suppressed.
These effects are confined to the buffer layer, beyond which the modulation of flow
quantities decreases sharply.

Further comments are required concerning the unusual behaviour of 〈Sdu′/dt〉 shown
in figure 8(b). It is clearly seen that 〈Sdu′/dt〉 has large negative values at 0.4 < t/T < 0.8
during the acceleration phase, contrary to the SBL wherein Sdu′/dt > 0. Figure 8(b)
shows that this effect is significantly pronounced in the buffer layer. In isotropic
homogeneous turbulence, negative Sdu′/dt would mean inverse inertial transfer of
energy across the wavenumber domain, and rapid destruction of the mean-square
vorticity by compression, i.e. the suppression of nonlinear mechanisms. Such a strong
reaction altering the fine structure of the turbulence has never been observed before
to my knowledge. This point will be discussed further in § 4.

Figure 9 shows the phase averages of the Taylor timescale defined as:

〈λ+
T 〉 = 〈λT 〉ū2

τ SBL/ν =
√〈u′u′〉+/〈(du′/dt)2〉+,

together with the dissipation estimated through local isotropy by:

〈ε〉+iso = 〈ε〉isoν2/ū4
τ SBL = 15〈u′u′〉/〈u〉2〈λ+

T 〉2,
at y+∗ = 8. The isotropic part of the phase-averaged dissipation is compared with
the standard boundary-layer value, that is ε̄+iso = 0.023 at y+ = 8. This agrees well
with Antonia, Kim & Browne (1991). It is clearly seen that the isotropic dissipation
increases by a factor 12 at the end of the acceleration phase of the injection velocity
〈v0〉, followed by a decrease of the Taylor timescale by a factor 2.

We should make a general remark here, relating both to some comments made be-
fore and to the measurement difficulties. The near-wall turbulence is highly anisotropic
and the isotropic dissipation contributes only by some 20% to ε̄+ in the low buffer
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layer (Antonia et al. 1991, figure 12). For the same reasons, 〈Sdu′/dt〉, discussed pre-
viously, is only qualitatively related to the stretching mechanism, although it is a strong
indicator of nonlinearity. We cannot give more exact details on these quantities with
existing experimental means. The whole phenomenon studied here is mainly confined
to the low buffer layer. In order, for example, to analyse the dissipation in detail, we
need statistics related to ∂u′/∂y at y+ < 8. This term is the easiest dissipation term
to determine experimentally, but it can be measured reasonably well only outside
the buffer region by a pair of parallel hot wires (Antonia et al. 1991). A distance
of at least ∆y+ = 4 is required to avoid both the flow and thermal boundary-layer
interferences, and that is why such a tentative result would be meaningless. To explain
why more detailed flow quantities, including the flow visualizations or PIV data, could
not be obtained here, we should emphasize that the thickness of the viscous sublayer
(y+ = 5) is 0.4 mm under the present experimental conditions. However, the lack of
finer measurements does not discredit the previous physical arguments. There is a
strong effect of imposed unsteadiness on the fine structure, of orders of magnitude.

It is possible to give a more accurate approximation of 〈ε〉. By analysing the terms
of the dissipation tensor and using the DNS data at two Reynolds numbers, Antonia
et al. (1991) have shown that the quantity,

ε̄2 = 2ν
∂u′2

∂y
+

11

15
ε̄iso ,

is closer to the dissipation near the wall than the isotropic term alone. A crude
approximation of the first term replaced by its wall value leads to:

ε̄2 =
2

ρ
τ′τ′ +

11

15
ε̄iso .

This approximation is acceptable only in the viscous and low buffer sublayers.
The unsteady data have to be scaled with the phase-averaged inner variables for a
rigorous comparison with the standard boundary layer. Therefore, we should compare
〈ε2〉+∗ = µ2〈ε2〉/〈τ〉2 with ε̄+2 SBL = µ2ε̄2/τ̄

2
SBL. The triangles in figure 9 show the ratio
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〈ε2〉+∗ /ε̄+2 SBL, which collapse surprisingly well with 〈ε〉+iso/ε̄+iso . The conclusion is still that
there is increase of dissipation during the acceleration phase.

The comparison of figures 8 and 9 indicates that there is a complete lack of
equilibrium at 0.4 < t/T < 0.8 since the dissipation and the production (supposed
to be proportional to the ejection frequency) are in opposition of phase. This is
a common behaviour in high-frequency unsteady flows where large time lags exist
between cause and effect mechanisms, as, for example, in channel flows subjected to
an oscillating pressure gradient (Tardu & Binder 1997). The decrease of the Taylor
timescale coincides with the decrease of the ejection frequency (i.e. the increase of
the ejection period) showing that small-scale turbulence dominates the acceleration
phase. Curiously, both 〈ε〉, 〈λT 〉, 〈fe〉 and 〈Sdu′/dt〉 are constant at t/T < 0.4, i.e. until
the middle of the acceleration phase, and these quantities remain more or less equal to
those of the SBL when they are properly scaled with local inner variables. The strong
modifications in the turbulence structure take place suddenly, once 〈v0〉 is accelerated
sufficiently.

3.3. Birth of a coherent spanwise structure emerging from the relaminarized phase

The space–time evolution of the near-wall flow at locations further downstream is
striking. First, the velocity profiles become strongly inflectional at x+ = 40 and
approximately in the middle of the deceleration phase. Figure 10(a) shows the phase-
averaged velocity profiles at t/T = 0.4 (for reference) and at 0.8, corresponding,
respectively, to the middle of the acceleration and deceleration phases of the injection
velocity. The presence of an inflection point at t/T = 0.8 where 〈τ〉 decreases to the
laminar limit (figure 5a), is clear. It may, therefore, be argued that the relaminarized
flow is possibly unstable to inviscid disturbances according to the Fjortoft theorem.
This behaviour is somewhat consistent with the general idea that time or space
deceleration destabilizes the flow (Shen 1961; Drazin & Reid 1981 p. 361). Figure 10(b)
shows the y+∗ distribution of the phase-averaged shear 〈∂u+/∂y+〉 = ν/ū2

τ SBL〈∂u/∂y〉.
Denoting the velocity at the point of inflection by 〈u〉I , we have in the low-buffer
layer ∂2〈u〉/∂y2[〈u〉−〈u〉I ] < 0 at t/T = 0.8, and this is a necessary (but not sufficient)
condition of inviscid instability. It is emphasized here that close inspection of the
phase-averaged streamwise velocity profiles shows that the local gradient is never zero,
and that the vorticity does not change sign. Therefore, the observed behaviour is not
due to a local unsteady separation according to the Moore–Sears criteria. Nowhere in
the flow do the velocity and vorticity vanish simultaneously. Note in figure 10(b) that
the extrapolation of the data to the wall indicates that the phase-averaged pressure
gradient at y = 0 is (1/ρ)(∂〈p0〉/∂x) = ν(∂2

0〈u〉/∂y2) = 0. Therefore, there is no trace
of an adverse pressure gradient induced by oscillating blowing that may lead to
separation at x+ = 40.

The destabilized flow enters subsequently a retransition region further downstream
following the scheme reported by Narasimha & Sreenivasan (1973). This leads to
the accumulation and enhancement of a patch of spanwise vorticity of the opposite
sign to the mean vorticity during the deceleration phase at t/T = 0.8. The existence
of this coherent patch may be seen clearly by the local maximum and minimum
appearing in the

√〈u′u′〉/ūτ SBL profile shown in figure 10(c). The fact that it is
positive may be understood through the sudden changes in the skewness of u′ shown
in figure 10(d) and the mechanism suggested schematically in figure 11. This patch
rolls up into a coherent structure Ω′zCOH > 0 at approximately y+ = 12. Figure 11
gives a possible explanation of the effect of this coherent structure on the velocity
profiles, where it is suggested that Ω′zCOH > 0 may accentuate the inflection. Similar
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scenarios wherein the roll-up of a structure occurs near an inflection point have
been reported in studies involving vorticity-generation mechanisms (Ersoy & Walker
1985). The origin of Ω′zCOH > 0 is situated at approximately x+ = 20. Its birth, in
turn, gives place downstream to a secondary spanwise vorticity layer near the wall
with opposite sign, i.e. ω′z SEC < 0 because of the non-slip condition (see for example
Doligalski & Walker 1978). We will show in the next section that this layer rolls
up into a secondary coherent vortical structure Ω′z SEC < 0 in the far flow field and
will accelerate the relaxation process. The genesis of the ω′z SEC < 0 layer and its
subsequent development are well localized both in time and space. The vortex-ring-
like structure, similar to the streamwise Falco typical eddy shown in figure 11, is likely
in the far flow field where ω′z SEC < 0 is rolled up, but it is only suggested for the
moment.

The whole structure is convected downstream, while ω′z SEC < 0 is reinforced
and Ω′zCOH > 0 diffuses somewhat more rapidly. The secondary wall vorticity layer
induced by Ω′zCOH > 0 through viscous effects is of the same sign as the pre-existing
spanwise vorticity near the wall that is enhanced. Consequently, the wall shear stress
increases almost in a Dirac function fashion at times and locations which are perfectly
predictable as shown in figure 12(a). The near-wall turbulence activity increases also
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at the same times (figure 12b). Note, however, that 〈τ′τ′〉/τ′τ′SBL is hardly larger than
1 at x+ = 75, while the shear is already beyond the standard boundary-layer value at
x+ = 55, at which station the maximum 〈τ′τ′〉 is only 〈τ′τ′〉/τ′τ′SBL = 0.5 (not shown,
to facilitate the reading). The unsteady localized blowing has a more favourable effect
on the near-wall turbulence activity than the drag, at least in the near flow field.

The origin of the Ω′zCOH > 0 vortex is the positive primary vorticity layer ω′zCOH > 0
created immediately downstream of the slot. This layer is the direct consequence of
localized blowing, whether it is steady or unsteady. It dilutes the existing negative
spanwise vorticity near the wall, and that is why blowing decreases the shear. Under
certain circumstances that will be discussed later, this vorticity layer concentrates,
becomes confined in the low-buffer sublayer, and locally relaminarizes the flow.
Further downstream, the vorticity assumes a distribution closer to its normal form.
This implies that there is a vorticity discontinuity downstream of the relaminarized
phase. The discontinuity being one of the necessary conditions for roll-up, it is
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expected that the latter is set-up downstream. That may explain why the transition
marked by the first stages of the roll-up and shown by the arrows in figure 5 comes
before (i.e. downstream of) the relaminarization. A second plausible explanation is
the following. Narasimha & Sreenivasan (1979 p. 285) have attributed the drop in the
mean-square turbulent intensities and relaminarization by continuous blowing to the
suppression of the intermittent Taylor–Görtler instability. The intermittent Taylor–
Görtler instability is triggered by the sweeps that create, locally and intermittently,
concave fluid trajectories. The blowing, in return, renders them strongly convex
immediately downstream. Thus, the near-wall flow is stabilized very near the slot, but
further downstream the intermittent stability mechanism remains less affected. Thus,
it is potentially more capable of triggering the roll-up of the ω′zCOH > 0 layer.

Figure 13 shows the travelling distance versus the time determined from the intervals
separating the peaks of the shear stress, marked by the arrows in figure 5. Note that
there is almost no scatter in this figure. A structure advection velocity UC of 7ūτ SBL

can be deduced from these results, indicating that the structure merely is close to
the wall. The whole phenomenon relaxes further downstream at x+ = 600, as will
be discussed in § 3.5. This mechanism that acts as a vorticity pump occurs in the
high-frequency regime, as we will show in § 3.6. Therefore, it can nicely be used to
increase the drag and prevent unsteady separation and/or to decrease it through
distributed blowing locations and by frequency modulation with only negligible cost.
On the other hand, the combination of phase-shifted blowing/suction at x+ > 40
may be efficient for the space–time control of ω′z SEC . A consistent scheme explaining
the set-up of these phenomena is discussed in § 4.3.

3.4. Development of the secondary vorticity layer and roll-up

The first roll-up stages of the secondary vortical structure are perceptible at t/T =
0.6 and x+ = 40 in the phase-averaged skewness profiles shown by small squares
in figure 10(d). An estimation based on the convection velocity and the time of
appearance of the structures implies that the secondary structure occurs at 20–30 wall
units downstream of Ω′zCOH > 0. Zhou et al. (1999) who investigated the generation
of coherent hairpin packets through direct numerical simulations and stochastic
estimation have recently reported a similar downstream generation mechanism. The
roll-up is only partial at this stage, and the secondary structure is weak. The near-
wall flow is still under the effect of the ω′z SEC < 0 layer created downstream of
the primary structure. This secondary vorticity layer is confined to the low-buffer
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layer and diffuses weakly. It enhances the wall vorticity that is of the same sign,
and the shear increases drastically until x+ = 150 (see § 3.5). Figure 14(a) shows the
profiles of the phase-averaged skewness at x+ = 120, the first test station that is just
upstream. It is seen that there is a large discontinuity in 〈Su′ 〉 at t/T = 0.8 with a
large negative contribution for y+∗ < 7 and a large positive contribution beyond.
The phase-averaged skewness 〈Su′ 〉 decreases to zero at y+∗ ≈ 0, while the skewness
should be close to its maximum value, which is 1 in a standard near-wall flow. A
local minimum appears in the phase-averaged shear at the same time and location
(figure 14b). The situation is indeed just the opposite of that for the appearance
of the primary structure discussed in § 3.3. A straightforward interpretation is that
the secondary vorticity is now entirely rolled up into Ω′z SEC < 0. Note that the
first weak signs of Ω′z SEC were found at y+∗ = 20 in figure 10(d), near the slot,
while the structure is now at y+∗ = 12, closer to the wall. The time of appearance
t/T = 0.8 agrees perfectly well with the estimation ∆t/T = (∆x+/U+

C )f+ based on the
advection velocity U+

C = 7 found in the previous section. With ∆x+ = 128− 40 = 88,
the estimation gives ∆t/T = 2, resulting in t/T = 0.8 at x+ = 128, given that the
structure first appeared at t/T = 0.6 and x+ = 40 (figure 10d).

The primary structure Ω′zCOH is pushed away from the wall and almost disappears
at x+ = 128, as shown by the circles in figure 14. We defined the positions of
primary and secondary structures, respectively, by the local maximum and minimum
of the shear. The oscillating local shears ∂ũ+/∂y+ = ∂〈u〉+/∂y+ − ∂ū+/∂y+ represent
the strength of the vortices. The results are shown in figure 15 which illustrates well the
weakening of the primary vortex by turbulent diffusion and the strengthening of the
secondary one by the inducing vorticity near the wall. At the same time, the secondary
structure moves closer to the wall (figure 15b) and the roll-over occurs when ω′z SEC is
enhanced sufficiently. It has to be emphasized that the generation mechanism observed
here differs from the viscous–inviscid interaction and the unsteady separation process
caused by a vortical structure moving above the wall, as intensively investigated by the
Lehigh group (Doligalski & Walker 1978). Although an inflection point is observed
at the same time and location of Ω′zCOH , there is no zero shear location in the flow
when neither the primary nor the secondary structure occurs. Therefore, there is no
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sign of an unsteady separation process. The vorticity is concentrated and there is a
discontinuity in the corresponding layers strong enough to lead to roll-over. In that
sense, the mechanism discussed here agrees well with Jiménez & Orlandi (1993).

The spanwise extent of the blowing slot is 10 times the streak spacing as indicated
in § 2.1. The flow is, therefore, a priori homogeneous in the spanwise direction. Indeed,
we show in Appendix B, that the phase averages of the wall shear stress and of its
turbulent intensity collapse over 86% of the slot spanwise extent L+

z = 1212 in the
near flow field, and 92% in the far flow field. The 〈u〉 and 〈u′u′〉 measurements lead
to the same results. That does not mean, however, that the triggering of the coherent
spanwise structures discussed here is not affected by the singularities at the spanwise
edges of the slot. We can imagine, for instance, that near the slot, these discontinuities
lead to a horseshoe vortex whose head is precisely the spanwise structure that we
detected. We are unable to reject or confirm this possibility. One comment that might
lead to the rejection of this hypothesis is the following. In the case of a horseshoe
(or a hairpin) vortex, the self-induced velocity field would normally push the head
of the structure further away from the wall, at least into the low-log layer. However,
we have always noticed that the coherent structures are within the low-buffer layer
(figure 15b).

3.5. Relaxation mechanism

The effect of the secondary structure on drag should be opposite to that of the primary
one, once it rolls up. In other words, Ω′z SEC should decrease the drag and help the
near-wall flow to recover somewhat more rapidly. To check this point, we summarized
the flow characteristics in the far flow field in figure 16, by plotting the maximum peak
phase-averaged values of the wall shear stress, and its turbulent intensity versus the
streamwise distance. These quantities are related to the local values of the standard
boundary layer. Once the ratios shown in figure 16 are equal to 1, there is no
more modulation of the flow quantities and the relaxation is completed. We checked
this point by further measurements in the buffer layer. The maxima are reached at
x+ = 150 as pointed out in the previous section. The secondary structure plays its
drag-reducing role immediately downstream by exponentially decreasing 〈τ〉max. The
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– – –, regression exponential.

data collapse well with the dotted lines in figure 16 resulting from a least-squares
exponential distribution. The agreement is particularly satisfactory at x+ < 350. The
increase of shear, on the other hand, is quite linear under the effect of the primary
structure when x+ < 150.

The turbulent wall shear stress intensity reaches values significantly larger than
〈τ〉max at x+ = 150. Its relaxation is slower. The maximum of the phase-averaged
wall shear stress reaches the local standard boundary layer value at x+ = 400. In
return, it takes 200 wall units more for the near-wall turbulence to relax entirely. The
exponential effect of Ω′z SEC on 〈τ′τ′〉max ceases at x+ = 250 at which position there is
still significant modulation of the wall shear stress intensity.

3.6. Effect of the imposed frequency

The mechanism discussed in the previous section occurs when the blowing frequency
is large. Figures 17(a) and 17(b) show the phase averages of the wall shear stress
as a function of the imposed frequency near the actuator at x+ = 20 and in the
far flow field at x+ = 120, respectively. The peaks in 〈τ〉 at x+ = 120 are observed
only for the two largest frequencies f+ = 11 × 10−3 and f+ = 17 × 10−3. The wall
shear stress intensity increases drastically at the same time, reaching values as large as
〈τ′τ′〉/τ′τ′SBL = 3, as discussed in § 3.3. Therefore, there are good reasons to suppose
a frequency threshold for the set-up of the primary structure Ω′zCOH . To check
this hypothesis, we conducted measurements by modifying the imposed frequency
while keeping the other flow parameters the same. We counted a roll-up when we
noticed the signature of induced ω′z SEC through a sharp localized increase of 〈τ〉. The
measurements were performed at four locations in the range 80 < x+ < 140. The
results are summarized in figure 18 by 0 when there is no roll-up, and by 1 otherwise. It
is seen that a critical frequency f+

cr = 8×10−3 delimits the roll-up process. The critical
frequency scaled with the local mean shear velocity is f+∗

cr = f(ν/u2
τLocal ) = 14× 10−3.

The transition from one regime to the other is discontinuous, if anything. Slight
modifications near f+

cr trigger or suppress the roll-up.
The phase averages related to f+ > f+

cr are remarkably similar in figure 17,
suggesting that the reaction of the near wall flow remains the same beyond the
critical frequency. In the low-frequency regime f+ < 5× 10−3, the reaction is globally
similar too, especially in the near flow field and with a nonlinear response in the far
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Figure 18. The critical frequency for roll-up is f+
cr = 8× 10−3.

flow field revealed by high harmonics in 〈τ〉 at x+ = 120 (figure 17b). The flow at
the smallest imposed frequency f+ = 3.8 × 10−3 is in the quasi-steady regime. That
is, the imposed unsteadiness is slow enough to allow the wall layer to adjust itself to
the instantaneous blowing velocity. The three large triangles in figure 17(a) show the
measurements when the blowing is steady at the corresponding phase averaged 〈v0〉,
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namely, at 〈v0〉+ = 0 (t/T = 0.15), 〈v0〉+ = 2.5 (t/T = 0.4) and 〈v0〉+ = 5 (t/T = 0.7).
These measurements collapse with the unsteady ones at f+ = 3.8× 10−3, as it should
be in the quasi-steady regime. The drag reduction does not vary exactly linearly with
the severity parameter near the actuator with steady blowing. While the wall shear
stress decreases by 36% at v+

0 = 2.5 the decrease is only 58% when v+
0 = 5.

The relaminarization effect of high-frequency blowing near the slot is clearly
perceptible in figure 17(a). The confined primary vorticity layer ω′zCOH decreases the
shear by 30% at t/T = 0.8 with respect to low-frequency blowing. The effect on
the wall shear stress intensity has to be more clarified. We show on figure 19 the
cyclic modulation of 〈τ′τ′〉 at x+ = 20. We have plotted the results corresponding
to the largest and smallest imposed frequencies, to facilitate the reading. The phase
averages for f+ < f+

cr are reasonably similar. Note in figure 19 that the high-frequency
unsteady blowing decreases the turbulent wall activity more than 50% at t/T = 0.2,
which marks the beginning of the acceleration phase. There is also less turbulence
activity at 0.6 < t/T < 1, owing to ω′zCOH (before the roll-up) and the finite-time
relaxation of the near-wall turbulence.

There is an interesting issue regarding the far-flow-field development in the high-
frequency regime. The wall shear stress phase averages at x+ = 120 are systematically
smaller when f+ > f+

cr and prior to the arrival of the primary structure, i.e. at
t/T < 0.6 (figure 17b). To quantify this feature, we computed the mean shear stress
at t/T < 0.6 and defined the quantity

τ̄t/T<0.6 =
1

0.6T

∫ 0.6T

0

〈τ〉 dt,
which filters, in some way, the retrograde vorticity effect of the imposed unsteadiness
on the drag. The open symbols in figure 20(a) show the corresponding results versus
the frequency. They are grouped above and below the critical frequency, strengthening
the previous remarks on the global similarity of the flow field in these regimes. It is
clearly seen that there would be a gain of 20% in drag reduction by high-frequency
blowing, if one could delay the Ω′zCOH effect. In the high-frequency regime, the drag
is significantly reduced during the acceleration phase near the slot. The relaminarized
phase recovers more slowly and that explains the decrease of τ̄t/T<0.6 downstream for
f+ > f+

cr . The conventional time-mean wall shear stress, correspondingly, increases
by 10–15% in the presence of the primary structure (closed symbols in figure 20a).
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the primary structure at x+ = 120, versus the imposed frequency. The closed symbols correspond
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The wall shear stress intensity τ′τ′t/T<0.6 distribution shown in figure 20(b) leads to
a similar conclusion. Figure 20(b) shows once more the singular modification of the
near-wall turbulence activity near the critical frequency.

The variations of the time-mean skewness Sdu′/dt at y+ = 12 as a function of f+ are
reported in figure 21. It is seen that the skewness decreases drastically once f+ > f+

cr

and reaches the local ‘isotropic’ value as discussed in § 3.1. Significantly, low 〈Sdu′/dt〉
was observed at the end of the acceleration phase for all the experiments performed
at f+ larger than the critical frequency. For low frequencies, correspondingly 〈Sdu′/dt〉
was hardly modulated, and the time-mean skewness was very close to the SBL value.
There is some trend for Sdu′/dt to decrease at f+ < f+

cr in figure 21. Yet, the sudden
decrease near the critical frequency is noteworthy. The alteration of the buffer layer
nonlinearity is therefore related to high-frequency oscillating blowing. Some further
comments on these effects are provided in § 4.4.

The flow mechanism at high imposed blowing frequencies is summarized in fig-
ure 22. The blowing induces a positive wall vorticity layer that hardly diffuses beyond
the low buffer layer. Its first effect is to counterattack the existing negative vorticity
and consequently to relaminarize the flow. Once ω′zCOH > 0 is strong enough, it rolls
up into a coherent spanwise vortex. Then a penalty results, because Ω′zCOH induces a
negative vorticity layer near the wall. The latter increases the shear, and at the same
time, triggers the wall turbulence activity. Further downstream, the negative vorticity
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layer rolls up in its turn. The secondary structure, whose effect is the opposite of the
primary one, accelerates the relaxation. Some physical insights into this phenomenon
will be discussed in § 4.3.

3.7. Efficiency of localized unsteady blowing as a probing strategy

The efficiency of localized unsteady blowing as a probing method discussed in § 1 will
now be discussed. Recall that the aim of the probing is to reduce the uncertainties,
enhance future decisions and decrease the amount of cautious control. Its efficiency
is related to the post-update state covariance matrix of the system parameters,
i.e. the covariance estimate after probing had been applied at a given step. The
determination of this matrix is not possible here, since we only analyse an open-loop
system. However, we can intuitively claim that the prediction will be related to 〈τ′τ′〉
in a closed-type algorithm including the unsteady local blowing as probing control.
Low phase averages of wall shear stress intensities resulting from the ‘probing’ will
obviously improve the future state estimates and control actions. The error of a
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one-step predictor is related to the τ′ spectra Sτ′(ω) by:

E = exp

{
1

fk

∫ fk

0

ln Sτ′(ω) dω

}
,

according to the Kolmogorov formula where fk stands for the Kolmogorov frequency.
That shows how the reduction of 〈τ′τ′〉 enhances the prediction. According to fig-
ure 12(b), 〈τ′τ′〉/τ′τ′SBL < 1 until x+ = 75. This criterion alone is not sufficient to
decide on the efficiency of high-frequency unsteady blowing. The same reduction
could be, for instance, obtained by low-frequency, quasi-steady blowing too. For that
reason, we defined another efficiency criterion. Thus, we computed the amount of
time that 〈τ′τ′〉 is smaller than the wall shear stress intensity that would result from
quasi-steady blowing (QS) at the corresponding injection velocity 〈v0〉 and streamwise
distance. Denoting this by 〈τ′τ′〉QS , we define the efficiency eτ′ by:

eτ′ =
∑

Ni/N with Ni = 1 if 〈τ′τ′〉 < 〈τ′τ′〉QS ,
and Ni = 0 otherwise,

where N is the total number of channels (discrete time periods) defining the phase
average. Clearly eτ′ is the percentage of time 〈τ′τ′〉 < 〈τ′τ′〉QS , during the oscillation
cycle. Figure 23 shows the results obtained in the high-frequency regime f+ > f+

cr .
It is seen that the wall shear stress intensity phase averages are smaller than 〈τ′τ′〉QS
during 70% of the time for x+ < 75. The ratio 〈τ′τ′〉/〈τ′τ′〉QS is smaller than 0.5
for some 50% of these time periods. In terms of system parameter estimations, the
efficiency for the wall shear stress intensity is more important than the efficiency for
drag in a probing strategy. The quantity eτ defines the efficiency for the wall shear
stress, in a similar manner and is also shown in figure 23. The drag efficiency is
about 0.5.

Thus, the probing by high-frequency localized blowing can be quite efficient in
the zone x+ < 75. The spacing between MEMS used in the cautious part of an
envisaged dual control scheme (figure 1) can be increased by an order of magnitude.
As pointed out in the previous sections, this efficiency results from the confinement of
the positive ω′zCOH vorticity layer to near the wall, which counterattacks the existing
vorticity distribution and stabilizes the turbulence activity. The penalty is the roll-up
resulting in large 〈τ′τ′〉/τ′τ′SBL at x+ > 75 and for some t/T . Therefore, another
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blowing causes a deficit of the non-slip velocity corrected by a vortex sheet. The associated vorticity
ωzCOH > 0 rolls up into ΩzCOH in the high-frequency regime and during the deceleration phase.

probing strategy has to be adopted at this station to delay the effect of the primary
structure. One way to prevent the roll-up of the retrograde spanwise vortex Ω′zCOH

may be the use of time-periodical phase-shifted blowing–suction somewhere near
x+ = 75. Another possibility is to investigate the effect of nonlinear time-periodical
localized blowing, by fast step acceleration (to relaminarize) followed by smooth
deceleration (to stabilize). Both possibilities will be analysed in the future. This gives
some future perspectives. The only way of determining the whole probing strategy is
by experimentation.

4. Discussion
4.1. Main physical mechanism of local unsteady suction–blowing

The management of near-wall turbulence by unsteady suction/blowing is closely
related to the flux of vorticity induced locally at the wall. Consider the phase-averaged
streamwise equation of momentum over the slit:

〈v0〉∂0〈u〉
∂y

= −1

ρ

∂〈p0〉
∂x

+ ν
∂2

0〈u〉
∂y2

− ∂〈u′v′〉0
∂y

= −1

ρ

∂〈p0〉
∂x

+ ν
∂2

0〈u〉
∂y2

,

since 〈u′v′〉 ∝ y2 near the wall. In this expression, u and v denote the streamwise
and wall normal velocity components in the x- and y-directions, respectively, p is the
pressure and primes indicate fluctuating quantities as usual. The zero subscript refers
to quantities computed at the wall. Noting that the phase-averaged spanwise vorticity
at the wall is 〈ωz0〉 = (∂0〈v〉/∂x)− (∂0〈u〉/∂y) ≈ −∂0〈u〉/∂y, because ∂0〈v〉/∂x can be
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neglected except near the ends of the slit, we have:

〈v0〉〈ωz0〉 =
1

ρ

∂〈p0〉
∂x

+ ν
∂0〈ωz〉
∂y

,

which expresses the simple fact that there is equilibrium between the advection of
vorticity through the slit and flux of vorticity at y = 0. In the case of suction, there is
a real physical removal of spanwise vorticity from the wall and the flux of vorticity is
positive, since 〈v0〉 < 0 and 〈ωz0〉 < 0 as in a boundary layer with favourable pressure
gradient. The vorticity withdrawn by suction is rapidly replaced at the wall to keep
the non-slip condition in force, so that there is a rapid generation of vorticity, say
δ〈ωz0〉 of the same sign as in the incoming flow. Consequently, the flow accelerates
by an amount that is approximately δ〈u〉/δx ∝ −(δ〈ωz0〉/δx)y > 0, resulting in
a local increase of the wall shear stress. Although it is well known that suction
is qualitatively similar to flows with favourable pressure gradients, the former is
fundamentally different in turbulent boundary layers because it additionally involves
the removal of both streamwise and wall normal vorticity.

In blowing, there is no removal or addition of vorticity, but we may still argue that
there is a flux of vorticity that is now negative as in the adverse pressure gradient case.
The mean and instantaneous spanwise vorticity (which is skewed to negative values
near the wall), together with vortical intensive energetic structures are displaced and

pushed away from the wall by say δ〈yv〉 ∝ ∫ t+〈tc〉
t
〈v0〉 dt, where 〈tc〉 is the effective

convection time of the structures over the slit. The convection time may be estimated
as t+c ∼ L+

x /u
+
c with u+

c and L+
x being, respectively, the typical convection velocity and

the streamwise extent of the slit in wall units. We have shown in § 3.2, that the effect of
the imposed unsteadiness is confined to the low buffer layer. It is therefore logical to
consider that the convection velocity is typically the local velocity at y+ ∼ 10, which
gives t+c ∼ 1 under the present experimental conditions. This value is significantly
smaller than the blowing oscillation period T+ = 59. Consequently, the vorticity
displacement may be written here as δ〈yv〉 ∝ 〈v0〉〈tc〉. Denoting by 〈ωd〉 the amount of
vorticity pushed away from the wall, it is easy to realize that the net effect is an induced
deficit of δ〈uw〉 ∝ 〈ωd〉δ〈yv〉 < 0 in the non-slip velocity at the wall. The latter is
subsequently corrected by the formation of a thin vortex sheet in front of the wall and
of its image with vorticity of opposite sign to that existing in the flow (see figure 24).
The strength of this sheet may be estimated as δ〈Γ0〉/δx ∝ −δ〈uw〉 ≈ −〈ωd〉δ〈yv〉.
The vorticity sheet is subsequently diluted through diffusion. Thus, the wall shear
stress decreases and the flow decelerates near the wall. This phenomenon takes place
over and just upstream of the local blowing station. The zone downstream of the
slit is concerned with the relaxation of the turbulence structure modified by the
discontinuous intervention. Note that the arguments presented here are based solely
on the spanwise vorticity and exclude the effect on the quasi-streamwise energy-
producing eddies. The analysis is, therefore, not complete, but it may provide a first
schematic model to give insight to a complex phenomenon.

4.2. Equivalence between steady and unsteady blowing

We will now discuss the equivalence between the unsteady and steady blowing
with the same time mean blowing severity parameter in terms of boundary con-
ditions, i.e. vorticity flux. First, note that the pressure gradient term ∂〈p0〉/∂x is
retained in the streamwise momentum equation given above. In Falkner–Skan type
flows, the boundary-layer approximation is often used, and a specific distribution
of suction–blowing velocity is required to obtain similarity solutions. In other sam-
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ple computations dealing with steady discontinuous viscous suction, the pressure
gradient is ignored at first glance (Sherman 1990, p. 372). These important terms
require full computation, but it is logical to neglect them in an approximate qualitat-
ive analysis. Furthermore, there is an additional complexity in the case of unsteady
blowing, because the wall normal velocity induces an oscillating pressure gradient
without any flux of vorticity according to the wall normal momentum equation over
the slit, i.e. ∂〈v0〉/∂t = −(1/ρ)(∂〈p0〉/∂y). This may throw doubt on the boundary-
layer approximation near the slit. However, the main mechanism is still the flux of
vorticity under the present working conditions. With a sinusoidal blowing velocity
〈v〉+0 = Â+(1 − cosω+t+) expressed in wall units, we have ∂〈p+

0 〉/∂y+ ∼ Â+ω+ while

the flux of vorticity is ∂0〈ω+
z 〉/∂y+ ∼ Â+. The maximum imposed frequency in this

study is ω+ = 0.1, which shows that the wall normal oscillating pressure gradient is
an order of magnitude smaller.

According to these remarks, the time-mean streamwise momentum equation reduces
to:

v̄0ω̄z0 + [ṽ0ω̃z0] =
1

ρ

∂p̄0

∂x
+ ν

∂0ω̄z0

∂y
≈ ν ∂0ω̄z0

∂y
,

when the blowing is unsteady. The time-mean severity parameter is fixed the same in
this study for steady and periodical blowing runs. That does not ensure the same flux
of vorticity, however, mainly because of the ‘streaming’ quantity ṽ0ω̃z0 in the brackets
of the preceding equation but also because the mean streamwise vorticity can be
different under steady and unsteady blowing conditions at the injection slot. It turns
out that, in the high-frequency regime f+ = 0.017 detailed in this paper, the time-
mean wall shear stress is not affected near the slit (until x+ = 40 downstream) and
that the modulation ω̃z0 is approximately in quadrature with the injection velocity
ṽ0. This behaviour may be explained by the fact that the diffusing vorticity is in
quadrature with the flux of vorticity in the high-frequency regime to the first order as
in Stokes flow over an oscillating flat plate. This may be rigorously shown through
a method given by Schlichting (1979 p. 428) but the details will be omitted here.
Therefore, ṽ0ω̃z0 is 6 times smaller than v̄0ω̄z0 and the ‘streaming’ appearing in the
boundary conditions may be neglected. In the high-frequency case, therefore, there is
equivalence between time-mean injection velocities and time-mean vorticity fluxes.

4.3. Roll-up mechanism

The roll-up of the sheet of vorticity, set-up at the wall to counterattack the effect
of blowing, is strongly frequency dependent. This process is not due to an unsteady
separation phenomenon, and takes place at high-imposed frequencies, as we have
shown in § 3.6. The birth of Ω′zCOH > 0 discussed in § 3.3 is due to the accumulation
of vorticity during the oscillation period. The intensification is, indeed, one of the
necessary conditions of the roll-up (Jiménez & Orlandi 1993).

It has been argued in § 4.1 that local blowing, pushing the mean vorticity and
coherent Reynolds shear stress producing eddies away from the wall, creates a deficit
in the non-slip velocity. The latter has been connected to the displacement of the
structures that has been estimated as 〈δyv〉 ∼ 〈v0〉〈tc〉, provided that the effective
convection time 〈tc〉 is significantly smaller than the imposed period T , as is the

case here. Therefore, the time-mean displacement in wall units is δy
+

v ∼ v̄+
0 t̄

+
c + ṽ+

0 t̃
+
c .

In a similar way, the circulation of the fresh vortex sheet generated at the wall to

reinforce the no-slip condition is Γ̄ ∼ Lxω̄dδyv + Lxω̃dδ̃yv , at the mean. It is recalled
that ωd stands symbolically for the vorticity displaced by blowing, and that Lx is
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the slot width. That the wall shear stress decreases in the immediate vicinity of the

slot is clearly due to the back diffusing vorticity layer, i.e. ∆τ
+ ∼ Γ̄+. Combining

and neglecting the streaming terms such as ṽ+
0 t̃

+
c , at first glance, we obtain a simple

estimation, namely ∆τ
+ ∼ L+

x ω̄
+
d v̄

+
0 t̄

+
c , which should be valid as long as the structure

of the flow is not profoundly altered, i.e. when there is no separation or roll-up. Recall
that the diffusing vorticity layer has been denoted by ω′zCOH in § 3.3.

We have shown in § 3.6 (figure 17) that the phase averages of 〈τ〉 and the mean
decrease in the shear are reasonably independent of the imposed frequency at x+ < 40,
as long as f+ remains below a critical value at which the roll-up takes place. According
to the arguments given in the previous paragraph, the strength Γ̄+ of the vorticity
layer generated in front of the slot is also insensitive to f+ before the set-up of the
roll-up.

The generated vorticity diffuses back out into the fluid to a distance l+ ∼ √t+.
in time t+. The timescale is imposed by the oscillations, i.e. t+ ∼ 1/f+, therefore,
l+ ∼ 1/

√
f+. Thus, the thickness of the region into which Γ̄+ diffuses decreases with

imposed frequency. Recalling that Γ̄+ is insensitive to f+, we deduce that the same
amount of vorticity is diluted into a zone increasingly confined, as the frequency
becomes large. Thus, it accumulates during the oscillation period, concentrates, and
becomes confined in a thin layer near the wall. Its first effect is the time-local
relaminarization in the immediate vicinity of the slot. Slightly further downstream,
the discontinuity in the vorticity distribution causes it to roll up into Ω′zCOH .

In a turbulent boundary layer, the vorticity is diffused by viscosity away from the
wall until reaching roughly y+ = 7, at which point turbulence diffusion is important.
We have shown in figure 18 and § 3.6 that the critical frequency beyond which the
coherent spanwise structure Ω′zCOH > 0 appears is f+∗

cr = 14× 10−3 when scaled with
the local shear velocity. This corresponds to a diffusion distance of l+∗ = 8.5 in local
variables. Thus, viscous diffusion alone governs the removal of the unsteady vorticity
layer from the wall in this regime and the turbulence does not participate in the
diffusion.

4.4. Further discussion on the effect on the fine structure

We now return to the peculiar behaviour of the phase-averaged skewness shown in
figure 8(b) and draw attention again to the negative values of 〈Sdu′/dt〉 occurring during
the acceleration phase. This behaviour is in total contradiction with the time-mean
profiles Sdu′/dt of the standard boundary layer where Sdu′/dt reaches large positive
values near the wall. The skewness factor of du′/dt appears in the equation for the
mean-square vorticity of the isotropic homogeneous turbulence, i.e.

dω′2

dt
=

7

3
√

5
Sdu′/dt ω′2

3/2 − 10ν

(
∂ω′

∂x

)2

(Batchelor 1953). The vorticity production term is proportional to Sdu′/dt. Positive
values of this term mean production by stretching, whereas negative values indicate
destruction by compression that rapidly suppress any turbulence activity that can-
not be maintained. The results presented in figure 8(b) suggest that suppression of
streamwise vorticity is plausible in the manipulated boundary layer. This conjuncture
is subject to the nature of the near-wall turbulence being highly anisotropic and
inhomogeneous. The observed effects are, however, so severe that a strong alternation
of the vorticity generation mechanism is certain.

Although 〈Sdu′/dt〉 < 0 shows strong interactions of the imposed unsteadiness with
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the nonlinearity near the wall, the streamwise stretching is undoubtedly not the only
activity in the generation of the streamwise vorticity. Moreover, its effect is negligible
regarding the tilting of wall normal vorticity ω′y near the wall (Brooke & Hanratty
1993; Jiménez 1994). The effect of unsteady blowing may be better captured, at least
qualitatively, by examination of the instantaneous equation governing ω′y:

Dω′y
Dt

= ω′x

[
∂〈v〉
∂x

+
∂v′

∂x

]
+ ω′y

[
−∂〈u〉
∂x

+
∂v′

∂y

]
+

[
ω′z − ∂〈u〉

∂y

]
∂v′

∂z
+ ν∇2ω′y,

where we made use of the continuity ∂〈v〉/∂y = −∂〈u〉/∂x. The stretching term of
ω′y is ω′y[−(∂〈u〉/∂x) + (∂v′/∂y)]. Since the effect of blowing near the wall and over
the slit is a local deceleration ∂〈u〉/∂x < 0, it is seen that positive ω′y is enhanced
by wall normal stretching ∂〈v〉/∂y > 0 while negative ω′y is compressed and rapidly
disappears by viscous diffusion. The somewhat enhanced ω′y > 0 is tilted to positive
streamwise vorticity ω′x > 0 by the shear according to:

Dω′x
Dt

= ω′x

[
∂〈u〉
∂x

+
∂u′

∂x

]
+ ω′y

[
−∂〈u〉
∂y

+
∂u′

∂y

]
+

[
ω′z − ∂〈u〉

∂y

]
∂u′

∂z
+ ν∇2ω′x

through the second term of this equation, but is then compressed by ∂〈u〉/∂x < 0 and
is subsequently weakened in its turn. The consequent destruction of ω′x which leads
to that of the coherent quasi-streamwise vortices is connected with the decorrelation
of u′ and v′ and results inevitably in relaminarization. This fractional scenario, in
which first the wall normal vorticity is stretched and tilted to streamwise vorticity
that is stretched in its turn, is in perfect agreement with the model suggested by
Jiménez (1994). In an accelerating flow, the situation is inverse but the conclusion is
the same. It is well known that both accelerating and decelerating flows may lead to
relaminarization, if the necessary precautions are taken to prevent the flow separation
in the latter case (Narasimha & Sreenivasan 1979).

5. Conclusion
The effects of an oscillating localized blowing on near-wall turbulence is inves-

tigated. The imposed frequency is twice as large as the ejection frequency of the
inner layer, and the blowing amplitude is 5 wall units. The severity parameter is low,
excluding any phenomena related to unsteady flow separation.

The ingredients characteristic of relaminarization are present near the slot at
x+ < 40 and during half of the cycle, namely:

(i) The wall shear stress decreases considerably until reaching the value that a
laminar boundary layer would have at the same Reynolds number.

(ii) Dissipation dominates the near-wall flow which is stabilized.
(iii) The velocity fluctuations in the inner layer are not zero, but their contribution

to the dynamics of the flow becomes inconsequential.
(iv) The frequency of active Reynolds-stress-producing events decreases consider-

ably and a thin region near the wall extending to approximately 2–3 wall units grows
from the wall, being free of fluctuating streamwise vorticity. The thickness of this
zone reaches almost 5 wall units during half of the oscillation cycle.

(v) The stretching of quasi-streamwise vorticity decreases strongly, as indicated by
negative values of the skewness of the streamwise velocity fluctuation time derivatives.
This part of the oscillation cycle also coincides with large decreases of the Taylor
timescale, indicating the appearance of small-scale turbulence.
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Figure 25. Sketch of the Cousteix–Houdeville probe used in this investigation.

The main effect of blowing is the displacement of the spanwise vorticity and
the turbulent-drag-inducing quasi-streamwise vortical structures (QS) away from the
wall. This phenomenon is associated with the formation of a thin vortex sheet in
front of the wall (and of its image) with vorticity of opposite sign to the mean
vorticity. This sheet subsequently dilutes through diffusion. It turns out that, in the
deceleration phase and when the imposed unsteadiness is sufficiently rapid, there is a
net accumulation of this sheet, leading to a coherent spanwise structure after roll-up.
This phase coincides with the uncoupling of the near-wall flow and the removed
QSVs, resulting in a temporal relaminarization. The near-wall part of this structure
has a spanwise vorticity layer of the same sign as the mean flow. Consequently, the
wall shear stress increases in a cyclic manner at x+ > 75, at times and locations
that are perfectly predictable. This induced secondary vorticity layer rolls over in its
turn by an essentially similar mechanism. The secondary spanwise structure has an
effect opposite to the primary one. It decreases rapidly the peaks of the wall shear
stress and accelerates the relaxation process. These are real unsteady effects occurring
only when the blowing frequency is larger than a critical value. The ensemble of the
results presented here shows how a time-varying intervention at the wall may involve
complex phenomena. It is hoped that they may provide new perspectives on near-wall
control, through a combination of phase-shifted and eventually frequency-modulated
local blowing/suction sites.

The phenomena reported in this paper are confined mainly to the low buffer and
viscous sublayers in the high-frequency regime. Detailed measurements of the entire
Reynolds shear stress tensor components in this zone are difficult, and so are flow
visualizations under the present experimental conditions. The primordial development
of three-dimensional effects involved in setting up the instabilities could therefore
not really be detailed. Experimental facilities (such as the Eckelmann’s oil channel)
wherein a relatively thick sublayer is available could allow the obtaining of informa-
tion that is more detailed. Direct numerical simulations even in the minimum channel
would also be of great help. Time-periodical nonlinear blowing–suction waveforms
must also be investigated in order to determine the most efficient probing strategy.

Appendix A. Validation of the wall shear stress measurements
The frequency response of the hot-wire gauge in the micro-cavity (figure 25) is

carefully checked by comparing the measured statistics of the fluctuating wall shear
stress τ′(t) in a canonical non-manipulated boundary-layer flow with existing data.
The results are summarized in figures 26 and 27. The ratio of the turbulent wall
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Figure 26. (a) Wall shear stress intensity divided by the time mean wall shear stress versus the
streamwise distance from the slot. (b) Flatness and skewness of instantaneous wall shear stress
compared with the DNS results of Spalart (1988).

shear stress intensity
√
τ′τ′ to the local wall shear stress τ̄ versus the distance x/δ

is shown in figure 26(a). Here, δ denotes the local boundary-layer thickness, as
usual, and x = 0 corresponds to X = 1.14 m from the leading edge. It is seen in

figure 26(a) that
√
τ′τ′/τ̄ = 0.35± 0.025 is in good agreement with Kim et al. (1987).

Since
√
τ′τ′/τ̄ =

√
u′u′/Ū as y → 0, the wall shear stress intensity may also be

compared with careful measurements very close to the wall. Such measurements have

been reported by Durst, Jovonovic & Sender (1993) who give
√
u′u′/Ū ≈ 0.36 at

y+ = 1. This result alone may be sufficient to certify the satisfactory response of the
wall gauge. Recall that values as low as 0.06 (1983), due to the effect of the heat
conduction into the substrate, have been reported in the literature.

The high-order statistics, i.e. the skewness Sτ′ = τ′3/τ′2
3/2

and the flatness Fτ′ =

τ′4/τ′2
2

of τ′(t) were also measured. The results are shown in figure 26(b). It was
found that, in the standard boundary layer, Sτ′ ≈ 1 and Fτ′ ≈ 4. Measurements of
high-order statistics are seldom reported in the literature, and, hence, a comparison
is not feasible. As an alternative, we compare with the DNS results of Spalart
(1988) and use the simple relationship between the (Sτ′ , Fτ′) and (Sω′z,0 , Fω′z,0 ), where

ω′z,0 = −(∂u′/∂y)y=0 is the fluctuating spanwise vorticity at the wall, since Sτ′ = −Sω′z,0
and Fτ′ = Fω′z,0 . According to Spalart, Sω′z,0 = −1 and Fω′z,0 = 4. These quantities
are, of course, consistent with the asymptotic values of the skewness and flatness of
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Figure 27. (a) The frequency of VITA events detected by the probe.
(b) The resulting conditional averages.

streamwise velocity fluctuations as y+ → 0. The measured values of the third and
fourth moments of τ′(t) are in close agreement with these results. The estimated errors
in the measurements of Sτ′ and Fτ′ are, respectively, 5% and 8%.

The temporal wall shear stress was further analysed by determining the frequency
of the shear-layer events detected by VITA defined in § 3.2. The distribution of the
time-mean frequency in wall units f̄+

e = f̄e(ν/ū
2
τ) of the VITA events is shown in

figure 27(a). It is seen that f̄+
e ≈ 0.012 and this value coincides well with that

obtained by Tardu & Binder (1997) in totally different conditions, namely in a fully
developed turbulent water channel at a nearly similar Reθ = 835 and with a TSI
1268W flush-mounted hot-film gauge. Recall that the wall hot-film measurements
in water are reliable, and the frequency response of the thermal boundary layer is
satisfactory, because the effect of the heat conduction into the substrate is negligible

(see for example Tardu et al. 1991). Finally, the conditional averages τ′cond/
√
kτ′τ′

shown in figure 27(b) correspond quite well to the measurements quoted before.
These results increase the confidence in the measurements reported in this paper.

Appendix B. Spanwise homogeneity
As indicated in § 2.1, the spanwise extent of the blowing slot is L+

2 = 1212 in wall
units, large enough to suppose that the flow is homogeneous in this direction. To
check to what extent this hypothesis is valid, we took measurements of the wall shear
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Figure 28. Phase averages of (a) the wall shear stress and (b) of its turbulent intensity, at x+ = 40
versus the spanwise distance beginning with the edge of the blowing slot. The imposed frequency is
f+ = 0.0017.

stress and the streamwise velocity field at, respectively, x+ = 40 and x+ = 120. They
were taken every 15 wall units until z+ = 90 and then every 40 wall units, z+ = 0
corresponding to the edge of the slot. The imposed frequency was f+ = 0.0017.
Figures 28(a) and 28(b) show, respectively, the phase averages of the wall shear stress
and of its turbulent intensity in the near flow field at x+ = 40. Only a few results are
reported here for the sake of clarity. These are independent measurements and the
comparison of figure 28 with figure 5 at the middle of the slot z+ = 606 indicates
that the results are reproducible. The first observation is the collapse of the phase
averages for z+ > 75, indicating that the flow is homogeneous over 86% in span.
The effect of the edge discontinuity is clearly perceptible at z+ < 45, especially in the
response of 〈τ′τ′〉. This effect rapidly disappears within a distance of ∆z+ = 30. The
peak in 〈τ′τ′〉 at z+ = 15 is quite pronounced. Recall that this peak is attributed to
the roll-up of the primary structure, because of the concentration and discontinuity
of the vorticity field. It is possible that the edge singularity speeds up this process.
The results are similar in the far flow field, the homogeneity being slightly larger, at
about 92% in span.
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